Api5 Contributes to E2F1 Control of the G1/S Cell Cycle Phase Transition
نویسندگان
چکیده
BACKGROUND The E2f transcription factor family has a pivotal role in controlling the cell fate in general, and in particular cancer development, by regulating the expression of several genes required for S phase entry and progression through the cell cycle. It has become clear that the transcriptional activation of at least one member of the family, E2F1, can also induce apoptosis. An appropriate balance of positive and negative regulators appears to be necessary to modulate E2F1 transcriptional activity, and thus cell fate. METHODOLOGY/PRINCIPAL FINDINGS In this report, we show that Api5, already known as a regulator of E2F1 induced-apoptosis, is required for the E2F1 transcriptional activation of G1/S transition genes, and consequently, for cell cycle progression and cell proliferation. Api5 appears to be a cell cycle regulated protein. Removal of Api5 reduces cyclin E, cyclin A, cyclin D1 and Cdk2 levels, causing G1 cell cycle arrest and cell cycle delay. Luciferase assays established that Api5 directly regulates the expression of several G1/S genes under E2F1 control. Using protein/protein and protein/DNA immunoprecipitation studies, we demonstrate that Api5, even if not physically interacting with E2F1, contributes positively to E2F1 transcriptional activity by increasing E2F1 binding to its target promoters, through an indirect mechanism. CONCLUSION/SIGNIFICANCE The results described here support the pivotal role of cell cycle related proteins, that like E2F1, may act as tumor suppressors or as proto-oncogenes during cancer development, depending on the behavior of their positive and negative regulators. According to our findings, Api5 contributes to E2F1 transcriptional activation of cell cycle-associated genes by facilitating E2F1 recruitment onto its target promoters and thus E2F1 target gene transcription.
منابع مشابه
Autoregulatory control of E2F1 expression in response to positive and negative regulators of cell cycle progression.
Both positive and negative signals govern the progression of cells from G1 into S phase, and a variety of data implicate the E2F transcription factor as a target for the action of one class of negative regulators, the Rb family of growth suppressors. We now find that the E2F1 gene, which encodes one of the components of E2F activity, is subject to autoregulatory control during progression from ...
متن کاملS Phase–Coupled E2f1 Destruction Ensures Homeostasis in Proliferating Tissues
Precise control of cell cycle regulators is critical for normal development and tissue homeostasis. E2F transcription factors are activated during G1 to drive the G1-S transition and are then inhibited during S phase by a variety of mechanisms. Here, we genetically manipulate the single Drosophila activator E2F (E2f1) to explore the developmental requirement for S phase-coupled E2F down-regulat...
متن کاملRbf1-independent termination of E2f1-target gene expression during early Drosophila embryogenesis.
The initiation and maintenance of G1 cell cycle arrest is a key feature of animal development. In the Drosophila ectoderm, G1 arrest first appears during the seventeenth embryonic cell cycle. The initiation of G1(17) arrest requires the developmentally-induced expression of Dacapo, a p27-like Cyclin E-Cdk2 inhibitor. The maintenance of G1(17) arrest requires Rbf1-dependent repression of E2f1-re...
متن کاملInteraction of the Retinoblastoma Protein with Orc1 and Its Recruitment to Human Origins of DNA Replication
BACKGROUND The retinoblastoma protein (Rb) is a crucial regulator of cell cycle progression by binding with E2F transcription factor and repressing the expression of a variety of genes required for the G1-S phase transition. METHODOLOGY/PRINCIPAL FINDINGS Here we show that Rb and E2F1 directly participate in the control of initiation of DNA replication in human HeLa, U2OS and T98G cells by sp...
متن کاملE2F activation of S phase promoters via association with HCF-1 and the MLL family of histone H3K4 methyltransferases.
E2F transcriptional regulators control human-cell proliferation by repressing and activating the transcription of genes required for cell-cycle progression, particularly the S phase. E2F proteins repress transcription in association with retinoblastoma pocket proteins, but less is known about how they activate transcription. Here, we show that the human G1 phase regulator HCF-1 associates with ...
متن کامل